Grid Balancing & Storage

MAY 25 2022, 09:00-10:30 CEST

Leading experts discuss the issues facing China and Europe

smart grids • storage • behind-the-meter
 gas-to-power • system integration

Octavian Stamate - Counsellor, EU Delegation to China Guido Dalessi - CEO, Elestor Walter Boltz - Senior Adviser on European Energy

Anders Hove - Project Director, GiZ

Co-operating in China MAY 25 2022, 10:45-12:15 CEST

Leading experts discuss the issues facing China and Europe

case studies
 wind turbines
 transmission
 smart energy systems
 efficiency

Dongye Zhang - Head of Offshore Wind, Shell China Luc Liu - GM China, Schneider Electric Alfred Che - VP, Danfoss China

EU-CHINA ENERGY Cooperation Platform

THE EUROPEAN UNION CHAMBER OF COMMERCE IN CHINA

"Innovation" – DAY 2

energypostevents

Co-orgnanisers

EU-CHINA ENERGY Cooperation Platform

European Union Chamber of Commerce in China 中 国 欧 盟 商 会

energypostevents THE BEST THINKERS ON ENERGY...LIVE

ONLINE PANEL DISCUSSION - Innovation -Grid Balancing & Storage

DAY 2: MAY 25 2022, 09:00-10:30 CEST Leading experts discuss the issues facing China and Europe

smart grids
storage
behind-the-meter
gas-to-power
system integration

Octavian Stamate - Counsellor, EU Delegation to China

Guido Dalessi - CEO, Elestor

Walter Boltz - Senior Adviser on European Energy

Anders Hove - Project Director, GiZ

EU-CHINA ENERGY Cooperation Platform

THE EUROPEAN UNION CHAMBER OF COMMERCE IN CHINA

Supported by:

Federal Ministry for Economic Affairs and Climate Action

on the basis of a decision by the German Bundestag

Role of EV smart charging in grid balancing

Sino-German Energy Transition Project

Anders Hove, Project Director

25 May 2022

Transport electrification can reduce average PM2.5 concentration in Jing-Jin-Ji, and the effect is more significant in winter than in summer

Source: Tsinghua University, April 2021

1

Tsinghua developed several charging profiles for Beijing based on trip data and generation profiles

Smart charging profiles look similar for several different scenarios

2

Source: Tsinghua University, April 2021

3

Difference in criteria air pollutants in July, Beijing

Source: Tsinghua University, April 2021

Cleaner electricity mix in 2030 will lead to much lower GHG life-cycle emissions for battery EVs

Cradle-to-grave GHG emission of ICEV and EVs

Source: Tsinghua University and GIZ, March 2022

4

5

For rural areas, modeling by our research partners showed EVs have strong potential to enable energy self-sufficiency

Schwaig, Bavaria, monthly household energy use and production, Optimistic scenario

Schwaig, Bavaria, summer daily energy use and production, Optimistic scenario

Source: Wuppertal University, January 2022

GIZ has also updated its view of the IRR of distributed solar and storage incorporating urban time-of-use prices in China

Issue brief: Economics of DPV+ES

TOU rates and solar curves, Chinese cities

Link:

6

https://www.energypartnership.cn/fileadmin/user upload/china/media elements/publications/2021/Economics of Urban Distributed PV in China EN.pdf

Flow Batteries Boosting the Energy Transition The enabling technology for a 100% carbon free electricity supply

Guido Dalessi, CEO

Elestor's battery technology

- For large scale, stationary electricity storage
- Typical applications:
 - Combined with large PV and Wind
 - Substituting gas fired power plants
 - Integration with hydrogen infra & electrolysers
- Fully modular, up to GW/GWh range
- Based on:
 - Flow battery technology
 - Active materials: Hydrogen & Bromine
- Patented worldwide

ELESTOR'S MISSION:

Targeting the lowest possible storage costs per MWh (LCoS)

Global bromine reserves are virtually unlimited, thus extremely low cost

Material	Global reserves (Kilotons)	Usage (kg/MWh)	Sufficient for% of required capacity	Supply & cost contraints
-	^	₹		+7_
Lithium Lithium Li-ion batteries	16.000 ²	0,9 ³	4%	 >90% of global reserves in 4 countries: Chile, China, Argentina, Australia. Oligopoly, no price pressure Mining creates large scale depletion and pollution of groundwater
Cobalt Li-ion batteries	7.100 4	0,2 ⁵	7%	 Approx. 60% of global reserves in 1 country: Congo, extreme geographic dependency Mined under torturous labour conditions
Vanadium Vanadium Redox Flow	20.0007	4,4 ⁸	1%	 85% of the global supply comes from China, Russia, South Africa Cost increased >400% from US\$ 13.50/kg in 12-2015 to US\$ 68/kg in 5-2018 90% of the Vanadium supply is used for hardening steel
Bromine Bromine Hydrogen Bromine Flow batteries	100.000.000.000	3,2	100%	+ Only 0,0016% of the global bromine reserves are sufficient for a 100% decarbonized electricity supply

The HBr flow battery as <u>Bi-Directional Power Plants</u>, replacing current gas fired power pants

An in-depth analysis shows that, with the optimal combination of Sun+Wind+Storage, Elestor's technology offers <u>the optimal economic solution</u> for a reliable <u>and</u> fully decarbonized electricity supply, with 100+ hr storage duration

The market for Long Duration Energy Storage (LDES)

Battery storage grew by 50% in 2020 alone and this rapid trajectory is likely to continue¹

However, the predictions for the future of storage vary dramatically:

- **IEA** (Energy Information Administration, USA) estimates that global installation of utility-scale batteries will increase 25 times between 2020 and 2040, reaching **10 TWh** by 2040, which equals 50 times the current market size²
- McKinsey predicts an even steeper growth, reaching 85 to 140 TWh by 2040³
- **Elestor**'s estimate is **500 TWh** for a 100% carbon-free electricity supply

Clearly, the energy storage industry is set to thrive, with a particular focus on long-duration energy storage.

Whatever prediction turns out right, the need for 100's of TWh of electricity to be stored with flow batteries translates into **massive opportunities**.

³ McKinsey (2021): https://www.mckinsey.com/business-functions/sustainability/our-insights/net-zero-power-long-durationenergy-storage-for-a-renewable-grid

¹ IEA (2021): https://www.iea.org/reports/energy-storage

² IEA (2020): https://www.iea.org/reports/innovation-in-batteries-and-electricity-storage

Capital cost developments

o <u>Cost per kW</u>

•

- Stabilizing for Li-ion
- Decreasing for Flow

o <u>Cost per kWh</u>

- High for Li, curve flattening
- Low for Flow, curve decreasing

o <u>Economies-of-scale</u>

- Li-ion: Already max benefiting
- Flow: At the verge of entering
- 10 and 25 hr systems show the low cost potential of Flow for Long Duration Electricity Storage
- This comparison only concerns capex, but <u>in terms of LCoS</u> the differences are much larger

"We will make electricity so cheap, that only the rich will burn candles"

- Thomas A. Edison

Elestor BV Westervoortsedijk 73, building BF 6827 AV Arnhem The Netherlands

<u>www.elestor.nl</u> info@elestor.nl